
AD-A266 703

Final Technical Report
DARPA Grant MDA972-92-J-1002

Curncula in Advanced Software Engineering
For the period 1 January 1992 through 31 Dacember 1992

Architectures for Software Systems:
A Curriculum Development Proposal

in Undergraduate Software Engineering

C _ Carnegie Mellon University
DTIC School of computer science

ELECTE fn Pittsburgh, PA 15213
~JUJL0 91993 May 1993

Technical contact: David Garlan
(412) 268-5056
David.Garlan@cs.cmu.edu

Mary Shaw
(412) 268-2589
Mary. Shaw@cs.cmu.edu

Administrative contact: Maryann Brendel
(412) 268-2091
mb4l+@andrew.cmu.edu

CLEARED
FOR OPEN PUBLICATION

APPROVED FOR PL', LI,' -'-

JUN 16 1993 3 DIST RID-uI. U ,

OIRECTORATE FOR FREEDOM OF INFORMATION
AND SECURITY REVIEW (OASO-PA)

DEPARTMENT OF DEFENSE

93--15534

--_ 's-u' '- u I, z

1 Project Goals and Rationale
This curriculum development project had as its primary goal the development of a

course that augments existing undergraduate software curricula by teaching concepts,
techniques, and examples at the architectural level of software design. Specifically,
Architectures for Software Systems would

"* Teach students how to understand and evaluate designs of existing software sys-
tems from an architectural perspective.

"* Provide students with the intellectual building blocks for designing new systems in
principled ways using well-understood architectural paradigms.

"* Show students how formal notations and models can be used to characterize and
reason about a system design.

"* Familiarize students with concrete examples of actual system architectures that
can serve as models for new designs.

This course not only adds innovative material to existing curricula, but also helps to
define the field of software architecture by organizing and regularizing the concepts and
by enabling the education of software designers in those concepts.

2 Results
We augmented the undergraduate software engineering curriculum at Carnegie Mel-

Ion University by developing a new course, Architectures for Software Systems. This in-
volved four specific activities:

1. Creation: In the semester preceding the teaching of the course we developed
the course syllabus, lectures, homework, exams. The syllabus was drawn from
an extensive bibliography of readings. The lecture sequence was designed to
balance theoretical and practical concerns. Homework was chosen to em-
phasize basic skills of architectural design. Solutions to assigned homework
were prototyped.

2. Teaching: We delivered the course as an undergraduate elective at Carnegie
Mellon University to about 20 students.

3. Evaluation: We used our experience of teaching the course to evaluate its effec-
tiveness, and suggest ways to improve it. This resulted in a revised course,
which was taught in the Spring of 1993, taught to 18 students.

4. Dissemination: We disseminated the results of our work in several ways
"* We wrote a paper describing and evaluating the course: "Experience with

a Course on Architectures for Software Systems*. The paper was
presented at the SEI Conference on Software Engineering Education in
October 1992, and appears in Proceedings of the Sixth SEI Conference
on Software Engineering Education, Springer-Verlag, LNCS 376. This
report is also available in technical report form as CMU/SEI-92-TR-17.

"* We are currently packaging the course materials as a unit for public dis-
tribution. These will be available as a CMU technical report within the next
month.

CARNEGIE MELLON UNIVERSITY SOFTWARE ARCHITECTURE CURRICULUM

2

"We developed a short form of the material, suitable for half- and full-day
tutorials. This material was delivered at the following conferences: Sof-
ware Engineering and Knowledge Engineering (SEKE'92), International
Conference on Computer Aided Design (ICCAD'92), International Con-
ference on Software Engineering (ICSE 15). It will be delivered again in
December, 1993 as an invited tutorial for SIGSOFT'93.

"* We produced a paper based on the course content as a general introduc-
tion to software architecture. The paper has been published as "An Intro-
duction to Software Architecture*, by David Garlan and Mary Shaw, and
appears in Advances in Software Engineering and Knowledge Engineer-
ing, Volume/, World Scientific Publishing Company, 1993.

Aeion! •oor

CARNEGIE MELLON UNIVERSIT SOFTWARE ARCHtTECTURE CURRICULUM

S= / m ¼! > II I I

In "Proceedings of the Sixth SET Conference on Software Engin-
eering Education" (October, 1992)

Experience with a Course on
Architectures for Software Systems

David Garlan'. Mary Shawl, Chris Okasaki t ,

Curtis M. Scott', and Roy F. Swonger2

School of Computer Science

Carnegie Mellon University
Pittsburgh. PA 14213

Digital Equipment Corporation
Nashua, NH 03062

Abstract. As software systems grow in size and complexity their design problem
extends beyond algorithms and data stuctures to issues of system design. This am-a
receives little or no treatment m existing computer sciencecurricula. Although courses
about specific systems are usually available, there is no systematic treament of the
organizations used to assemble components into systems. These issues - the software
architecture level of software design - are the subject of a new course that we taught
for the first tine in Spring 1992. This paper describes the motivation for the course,
the content and structure of the current version. and our plans for improving the next
version.

1 Overview

The software component of the typical undergraduate curriculum emphasizes algorithms and
data structures. Although courses on compilers. operating systems, or databases are usually
offered, there is no systematic treatment of the organization of modules into systems, or of the
concepts and techniques at an architectural level of software design. Thus, system issues are
seriously underrepresented in current undergraduate programs. Further, students now face
a large gap between lower-level courses, in which they learn programming techniques, and
upper-level project courses, in which they are expected to design more significant systems.
Without knowing the alternatives and criteria that distinguish good architectural choices,
the already-challenging task of defining an appropriate architecture becomes formidable.

We have developed a course that will help to bridge this gap: Architectres for Software

Systems. Specifically, the course:

- teaches how to understand and evaluate designs of existing software systems from an
architectural perspective,

"Development of this course was funded in part by the Department of Defense Advanced Research
Project Agency under grant MDA972-92-J-1002. It was also funded in pan by the Carnegie Mellon
University School of Computer Science and Software Engineering Institute (which is sponsored by
the U.S. Department of Defense). The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies. either expressed or
implied. of the U.S. Government. the Department of Defense, or Carnegie Mellon University.

- provides the intellectual building blocks for designing new systems in principled ways
using well-understood architectural paradigms,

- shows how formal notations and models can be used to characterize and reason about a
system design, and

- presents concrete examples of actual system architectures that can serve as models for
new designs.

This course adds innovative material to existing curricula on the subject of software
architectures. It also helps define the field of software architecture by organizing and regu-
larizing the concepts and by enabling the education of software designers in those concepts.

2 Background and Rationale

As the size and complexity of software systems increases, the design problem goes beyond
the algorithms and data structures of the computation: designing and specifying the overall
system structure emerges as a new kind of problem. Structural issues include gross organi-
zation and global control structure: protocols for communication, synchronization, and data
access: assignment of functionality to design elements; composition of design elements-
scaling and performance. and selection among design alternatives.

This is the software architecture level of design. There is a considerable body of work
on this topic, including module interconnection languages, templates and frameworks for
systems that serve the needs of specific domains, and formal models of component integration
mechanisms. However, there is not currently a consistent terminology to characterize the
common elements of these fields. Instead, many architectural structures are described in
terms of idiomatic patterns that have emerged informally over time. For example, typical
descriptions of software architectures include statements such as:

- "Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers." [S÷871.

- "Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix toaccommodate a diversity ofautonomous devices.
The architecture encourages a client-server model for the structuring of applications."
IFos85

- "We have chosen a distributed, object-oriented approach to managing information."
fLn871

- "The easiest way to make the canonical sequential compiler into a concurrent compiler is
to pipeline the execution of the compiler phases over a number of processors A more
effective way (is tol split the source code into many segments, which are concurrently
processed through the various phases of compilation (by multiple compiler processes)
before a final, merging pass recombines the object code into a single program." [S*881

Other software architectures are carefully documented and often widely disseminated.
Examples include the International Standard Organization's Open Systems Interconnection
Reference Model (a layered network architecture) [Pau8S], the NIST CASEE Reference
Model (a generic software engineering environment architecture) [Ear90, and the X Window
System (a windowed user interface architecture) [SG861.

It is increasingly clear that effective software engineering requires facility in architec-
tural software design. First, it is important to be able to recognize common paradigms so that
high-level relationships among systems can be understood and so that new systems can be
built as variations on old systems. Second, detailed understanding of software architectures
allows the engineer to make pnnctpled choices among design alteratives. Third. an archi-
tectural system description is often essential to the analysis and description of the high-level
properties of a complex system. Fourth. fluency in the use of formal notations for describing
architectural paradigms allows the software engineer to communicate new systems designs
to others.

Regrettably, software architectures receive little or no systematic treatment in most ex-
isting software engineering curricula, either undergraduate or graduate. At best, students are
exposed to one or two specific application architectures (such as for a compiler or for parts of
an operating system) and may hear about a few other architectural paradigms, but no serious
attempt is made to develop comprehensive skills for understanding existing architectures
and developing new ones. This results in a serious gap in current curricula: students are
expected to learn how to design complex systems without the requisite intellectual tools for
doing so effectively.

We have developed a course to bridge this gap. This course brings together the emerging
models for software architectures and the best of current practice. It examines how to
approach systems from an architectural point of view. Other curriculum proposals have
touched on this subject. but to our knowledge this is the first implementation of a full course
in the area.

3 Philosophy and Course Overview

3.1 Objectives

We designed a course for senior undergraduates and students in a professional master's
program for software engineering. By the end of this course, students should be able to:

- Recognize major architectural styles in existing software systems.
- Describe an architecture accurately.
- Generate reasonable architectural alternatives for a problem and choose among them.
- Construct a medium-sized software system that satisfies an architectural specification.
- Use existing definitions and development tools to expedite such tasks.
- Understand the formal definition of a number of architectures and be able to reason

precisely about the properties of those architectures.
- Understand how to use domain knowledge to specialize an architecture for a particular

family of applications.

3.2 Approach

We believe that important skills for designing complex systems can be provided by a course
that examines systems from an architectural point of view. Specifically, our course consid-
ers commonly-used software system structures, techniques for designing and implementing
these structures, models and formal notations for characterizing and reasoning about archi-
tectures, tools for generating specific instances of an architecture, and case studies of actual

system architectures. It teaches the skills and background students need to evaluate the
underlying architecture of existing systems and to design new systems in principled ways
using well-founded architectural paradigms.

Since this is an entirely new course rather than a modification of an existing course,
the major challenge in its development was to define and delimit its intellectual content.
While the ability to recognize and use software architectures is essential for the practicing
software engineer, there is to date no codified body of knowledge that deals specifically with
this subject. Rather, relevant material is scattered over published case studies, standards
reports, formal models, informal system documentation, and anecdotal experience. We have
collected many of these sources, distilled them into a corpus of presentable knowledge,
and discovered ways to make that knowledge directly usable by university students and the

software engineering community at large.
Our approach focuses on developing four specific, related topic areas:

Classification: In order to use software architectures, it is first necessary to be able to
recognize an architectural style and to describe a system in terms of its architecture. The
tools required to describe and categorize common architectural models include notations
for defining architectures and a taxonomy of existing models. In addition to introducing
the student to these tools, this topic addresses the problem of architectural selection
to solve a given software engineering problem. It covers both high-level architectural
idioms (e.g., pipeline architectures) and specific reference models (e.g., the OSI layered
model).

Analysis: Effecuve use of a software architecture depends on the ability to understand and
reason about its properties (such as functional behavior, performance, developmental
flexibility, evolvability, and real-time behavior). Such analysis can be applied to many
kinds of architectural description, but it is particularly effective in the context of formal

descriptions, where the power of mathematics can be exploited. This topic therefore
covers techniques for analyzing an architecture. It introduces students to formal and
informal methods and illustrates the ways in which formal analysis can be used to
evaluate and select among architectural alternatives (Fi87] [GD90.

Tools: Certain architectures have evolved to the point where there is system support for
defining applications using them and for executing those applications once they are
built. Examples include Unix support for single-stream pipeline architecures, compilers
for module interconnection languages (such as Ada package specifications), and IDL
(Interface Description Language) readers and writers for shared data. Facility with
such tools is a valuable skill for using the supported architectures in the context of
current technology. Moreover, existing tools provide good illustrations of the kinds of
automated support that we can expect to become pervasive as the field becomes more
fully developed and populated with useful architectures.

Domain-Specific Architectures: Specific knowledge about an application domain can im-

prove the power of the notations and tools for constructing systems in that domain. The
same holds true for architectures, and there is active research and industrial development
in the area of domain-specific software architectures [DSS90]. The course looks at a

number of these to understand how domain knowledge can be exploited in designing an
architecture tailored to a specific application family.

We rely heavily on case studies in each of these topic areas. These are used to motivate

the importance and scope of architectural approaches, illustrate what has been done so far,

and give students models for creating architectural descriptions of their own. In addition to
examining existing case studies, students are expected to carry out a significant case study
of their own. By doing this they practice applying the techniques of architectural description
and analysis and contribute to the field by adding to the body of carefully documented

architectural descriptions.

4 Course Description

In this section, we give an overview of each topic covered in the course. This information is
summarized in Figure 1. Each row of the figure contains the lecture number, the major topic
and subtopic covered in the lecture (as described below), the reading which the student is to
have completed prior to attending the lecture, and the homework assignment (if any) to be
discussed or turned in on that date. The assignments are numbered Al through A4, with the
course project due at the end of the semester. These are discussed in sections 4.3 through
4.5.

Introduction (2 lectures)

- Orientation. What is the architectural level of software design, and how does it differ
from intra-module programming? Overview of the course.

- What is a Software Architecture? Constructing systems from modules. Some familiar
kinds of architectures. Some common kinds of modules. [Sha90b, DK76, PW91]

Architectural Idioms (5 lectures)

- Objects. Information hiding, abstract data types, and objects. Organizing systems by
encapsulating design decisions, or "keeping secrets." [PCW85, Boo86, WBJ90]

- Pipes & Events. Two architectural idioms: pipes and event systems. Pipes support a
dazaflow model. Event systems support loosely-coupled components interacting via
event broadcasL [Par72, GKN881

- Multi-process Systems. Organizing systems as collections of independent computations
that run cooperatively on one or many processors. [And911

- Blackboards. Sharing complex knowledge about a problem; making progress when you
can't tell in advance what order to impose on the subproblems. [Nii86a. Nii86b]

- Heterogeneous Design. Designers don't have to limit themselves toa single architectural
idiom. Examples of systems that use several idioms at various places in the system.

(Sha9Oa, Sha9l]

Module Interconnection Languages (4 lectures)

- Classical MILS. Historically, the earliest large systems were developed in procedural
languages. The most common of the MILs reflect this in their emphasis on importing and
exporting names of procedures, variables, and a few other constructs. [PDN86, LS79]

- Unix Pipes. The Unix paradigm connects independent processes by data flow. The
organization of the processes and the style and tools for connection are substantially
different. [Bac86l

Lecture Topic Subtopic Reading Assignment

I Inuoducuon Orientation
2 What is a SW Arch? [Sh&90b. DK76. PW911

3 Architectural Objects IPCW85. Boo86, WBJ90]
4 Idioms Pipes & Events [Par72, GKN88]
5 Multi-process Systems [And9l]
6 Blackboards [NiiS6a. Nii86b)
7 Heterogeneous Design [Sha9Oa. Sha9l] Al discuss

8 MMLS Classical MILS [PDN86. LS791
9 Unix Pipes [Bac861 Al due

10 SML & Ada [H88.r1831
I I Augmentstions [Pea87. Gro9l1 A2 discuss

12 Formal Models [nto to Z [Spi89b. Shag5]
13 Indusmal Experience (GD90. HK9l1 A2 due

14 Executable Specs WZav911
15 Event Systems (GN91] A3 discuss

16 Pipes and Filter 1AG921
17 Domain-Spectfic Data Processing [Fis9l. RCS61 A3 due

18 Architectures Distd. Heterogeneous (BWW88, D*911
19 Real-Tune [SG90. Stagg]
20 Robotics [HR90. SSTS6]

21 Communication [Tang 11 A4 discuss
22 Tools & Envts Hints on Syst Design [Lamn84]
23 Design Guidance [Lan90] A4 due
24 Arch. Transformers [Bis87. BAPS71
25 System Generators [LS86. Joh86. B0911

26 EnvL Generators [HGN91] Proj due

27 Student Project
28 Presentations
29

Fig. I. Summary of Course Topics

- Module interconnecuon in Standard ML and Ada. An important property of modem
module interconnection languages is the ability to parmeterize modules. This is repre-

sented b) generics in Ada and functors in SW_. (H*88, 1831

- Augmentations to Module Interfaces. Future prospects for module interconnection. How
to augment a module's interface so that it conveys more than signatures. (PerS7. Gro9 11

Formal Models of Software Architecture ($ lectures)

- Introducton to Z. Basic notation of the Z Specification Language. The schema calculus.

(Spi89b, Sha851
- Industrial Expenence with Formal Models. Use of formal models to understand.

document, and analyze system architectures in two major industrial case studies.

[GD90. HK911
- Paisley. Executable specification language that supports some elementary performance

analysis. (Zav91 I

- Event Systems. Formal model of event systems. Specialization of abstr=t formal models
to describe specific systems. IGN911

- Pipes and Filters. Abstrat model of pipes and filters. Use of formalism to explain what
a software architecture is and to analyze its properties. [AG921

Domain-Specific Architectures (5 lectures)

- Data Processing. Architectures for management information systems. [Fis9l, RC861
- Distributed. Heterogeneous Computing. Applied pipe and filter architectures. Architec-

tures to support flexible processor allocation and reconfiguration. [BWW88, D*91]
- Real-TimeSystem Architectures. Real-time schedulers: rate-monotonicschedulingcyclic

executives, and others. Conditions under which a particular real-time architecture can
be applied. [SG90, Sta881

- ArchitecturesforMobileRobotics. Software organization of reactor-effector systems that
operate in an uncertn environment. The CMU task control architecture. [HR90, SST86]

- Layered Architectures for Communication. Network protocols based on layered model
of communication abstracuons. Special emphasis on ISO Open System Interconnection
(OS1) standard. [Tan8 1)

Tools. Environments, and Automated Design Guidance (5 lectures)

- Hints on System Design. Sage guidance and rules of thumb about designing good
systems. [Lam84j

- Automated Design Guidance. The selection of a software architecture should depend on
the requirements of the application. This example of a system shows how to make the
structural design of a user interface explicitly dependent on the functional requirements.
[L.an9oI

- Architecture TransJformers. Semi-automatic conversion of the uniprocessor version of
a system to a muluiprocesor version; not fully general, but works under clearly stated

conditions. [Bis87, BAPS7I
- System Generators. Automatic production of certain classes of systems from their

specifications. RLS86. Joh86, B0911
- Environment Generators. Automatic production of environments from descriptions of

the tasks to be performed. [HGN911

5 Assignments

5.1 Purpose

The purpose of the assignments, as in any course, is to help students master the material.
Assignments serve the additional purpose of demonstrating the students' mastery of the
material, thereby establishing a basis for evaluation.

Students begin by examining and understanding existing work in the area. Then they
apply what they've seen and heard, first by trying to emulate it and then by performing
analysis. Three kinds of assignments lead students through these activities.

First, the course is organized around written papers and lectures that present and interpret
this material. We believe that the lectures are most useful if they provide interpretation.

explanation, and additional elaboration of material students have already read and thought
aboUL In addition to assigning readings, we provide gudance about the important points to
read for and 4i,cstbons to help students focus on the most significant points in the reading.

SeAor -, four two-week assignments ask students to apply the lecture material. Three of
t- .,..signments require students to develop small software systems in specific architectural

styles. The fourth is a formal analysis task, which allows the students to work with a specific
architectural formalism.

Third. students examine existing software systems to determine their architectures.
We identified several systems of about 20 modules. For the final project of the course,
each student team analyzed the actual system structure of one of these and interpreted the
designer's architectural intentions.

We organized the students into teams of two (with one team of three because an odd
number of students enrolled). This encouraged students to enhance their understanding
through discussions with another student, reduced the amount of overhead required of any
one student to get to the meat of a problem, and allowed us to partially compensate for
diferences in programming language and other related experience. The course included
both undergraduate students and students in the Master of Software Engineering program;
to the extent possible we paired undergraduates with g iduaes so that their experience would
complement each other.

Since students often tend to spend most of their attention and energy on the components
of a course that contribute to the final grade, we used the allocation of credit as a device
to focus them on the most important activities. To this end, we included four factors in the
grading basis. Here is the description of these factors as stated in the initial course handout:

- Readings: (25%) Each lecture will be accompanied by one or more readings, which we
expect you to read before you come to class. To help you focus your thoughts on the
main points of the reading we will assign a question to be answered for each of the
reading assignments. Each question should be addressed in less than a page. due at the
beginning of the class for which it is assigned. Each of these will be evaluated on a
simple ok/not-ok basis and wi! count for about I% of your grade.

- Homework Assignments: (40%) There will be four homework assignments. Each will
count 10% of your grade. The first three willbe system-building exercises. Their purpose
is to give you some experience using architectures to design and implement real systems.
You will work in groups of two (assigned by us) to carry out each assignment. Tb help
clarify your designs we will hold a brief, un-graded design review for each assignment
during class a week before it is due. Groups will take turns presenting their preliminary
designs and getting feedback from the class and instructors. The fourth assignment will
give you some practice using formal models of software architectures.

- Project: (25%) There will be a course project, designed to give you some experience with
the architecture of a substantial software system. You will analyze an existing software
system from an architectural point of view, document your analysis, and present the
results to the rest of the class. Your grade will depend both on the quality of your
analysis and also on the presentation of that analysis.

- Insnructors' judgemem: (10%)

5.2 Readings

No textbook exists for this course. Background material for the course consisted of readings,
primarily from professional journals, selected to complement the lectures and discussions.
The objective was for every student to read each paper before the corresponding class lecture.

To ensure this, a short homework assignment was set for each class. Each homework
consisted of a few questions to be answered about the readings. These assignments were
due at the beginning of the corresponding lecture and discussion. Though the single grade
attached to a particular assignment would not significantly affect the course grade, the
cumulative effect of these individual grades resulted in significant weight being placed on
the readings.

A beneficial side effect of this policy was that it obviated the need for examinations. The
incremental learning process was monitored and reinforced by the assignments, so there was
no need for a final exam to measure student progress. As a result, end-of-semester energy
could be productively directed to the course project.

Each reading was accompanied by hints which identified points to look for in each paper
and gave advice on parts to ignore. These hints helped students to focus on the important
concepts in each paper, and were particularly important because of the wide variety of
notations and languages introduced in the readings.

Here are some examples of the hints we gave:

- In these readings you will be exposed to many different langu agz. You should not try to
learn the specific syntax of each Language, nor should you memorize the specific features
of each language. Rather. you should try to get a feei for the design space of module
interconnection languages-what it is possible to represent and what it is desirable to
represent.

- First and foremost, read to understand the blackboard model and the kinds of problems
forwhich itis appropriate. Study Hearsay and HASP to see how the model is realized in
two rather different settings. Look at the other examples to see the range of variability
available within the basic framework.

The questions for each assignment also played an important role in focusing the intellec.
tual energies of the students. The questions were structured to have the students understand
the concepts involved, rather than simply read to complete the homework. Since the reading
and homework combined were intended to take only a couple of hours, the questions dealt
with major points and did not require deep thought or analysis.

Here are some examples of the questions we asked:

- What are the essential differences between the architectural style advocated by Parnas
and that advocated by Garlan. Kaiser, and Notkin?

- What abstract data type does a pipe implement? What common implementation of that
abstract data type is used to implement pipes?

- What is the problem addressed by sharing specifications in SML? Why doesn't this
come up with Ada generics?

- What are the major abstractions of an interconnection model? How are these specialized
in the unit and syntacuc models?

5.3 Akchitectural Development Tasks

Believing that one must constructively engage a style to understand it, we assigned pro-
gramming tasks in three different architectural idioms. For each task, we supplied an imple-
mentation in the required idiom that used several components from an available collection.
The assignment required students to extend the implementation in the same style by recon-
necting parts, using other components, or minimally changing components. The choice of
this format was driven by two guiding principles:

- The attenuon of the students should be focused at the architectural level rather than at
the algorithms-ard-data-structures level. (Students should already know how to do the
latter.)

- it is unreasonable to expect the accurate use of an unfamiliar idiom without providing
illustrative sample code employing that idiom.

A pleasant side-effect of this choice of format was that problems more closely resembled
software maintenance/reuse than buildinga system from scratch. In addition, we were faced
with a considerable diversity of programming language background among the students. It's
easier to work in an unfamiliar language if you have a working starting point.

To encourag.. cooperation and to balance unfamiliarity with particular programming
languages and systems, students worked in pain on the programming tasks. However, each
task had a set of questions to be answered individually.

A major objective of this course is for students to leave with an understanding of the
essential features of a given problem that make a particular architectural choice appropriate
or inappropriate. To do this, we assigned variations of a single core problem for all three
tasks, differing primarily in the features related to the choice of idiom. By assigning the
same basic problem for each architectural idiom, we avoided the risk of students associating
problem class X with architectural idiom Y, instead promoting undersrtanding of the features
of each problem that should lead the designer to choose that idiom. By varying the features
related to the architectural choice, we also discouraged students from leaving each solution
in the same basic architectural idiom, adding only the superficial trappings of the second
idiom. For example, by changing the requirements on the system, we ensured that an event-
driven solution would not merely be a pipes & filters solution "dressed up" to look like an
event-driven system.

Because the problems involved not only the production of a working system but also the
analysis of an architectural style, we held design reviews halfway through each assignlmenL
These reviews were presented by the students in the clas, with each team making one
presentation sometime during the semester. The reviews were not graded; they thereby
provided a means for the class to engage in discussions about the architectural style and for
the instructors to guide the student solutions (both those being presented and those of the
students watching the presentation) by asking pointed questions. These presentations were
performed during class time, and their schedule is presented in Figure 1.

The core task chosen was the KWIC indexing problem[Pav'72, GKN88]. In this problem,
a set of lines (sequences of words) is extended to include all circular shifts of each line, and
the resulting extended set is alphabetized. This core problem was varied in each wrhitectural
idiom as follows:

Object-Oriented: This variation was imeractivr, a user enters lines one at a time. inter-
spersed with requests for the KWIC index. Students were supplied with a system which

generated the KWIC index without the circular shifts (i.e.. a line alphabetizer) and asked
to include the shifts. In addition. students were asked to omit lines which began with a
"trivial" word (e.g.. and or the).

Pipes & Filters: In this vanauon. students were asked to generate a batch version which
generated KWIC indices of login and user names (as generated by the finger command).
Students camed out two tasks. In one task, students used the Unix shell to connect
"modules" such as the common Unix commands finger, sort, and uniq. A second task
required them to connect the same modules in a pipe organization too complex to
describe in the shell, so that they had to use raw pipes from within C. As before, they
began with solutions which alphabetized lines but did not generate circular shifts.

Event-driven (implicit invocation): This variation extended the problem for the object-
oriented architecture with a delete command. Students were required to reuse existing
modules, augmenting them with event bindings to establish how they communicated.

5.4 Formal Modelling

To develop skill in understanding and manipulating formal models we assigned a task that
required students to extend an existing formal model of a software architecture.

As with the architectural development tasks the formal modelling task builds on an ex-
isting base-in this case the formal model developed by Garlan and Notkin of event systems
[GN91). In this work the authors showed how a simple model of systems based on event
broadcast could be specialized for a number of common systems, including Smalltalk MVC.
Gandalf programming environments, the Field programming environment, and APPL/A.

The students were asked to perform similar specializations for two different architectures:
spreadsheets and blackboard systems. In addition, they were asked to provide a commentary
that answered the following questions:

I. What important aspects of the modelled architectures are (intentionally) left out of the
model?

2. For the blackboard system, would it be possible to model some notion of "non-
interference'"?

3. For the spreadsheet system, is the Circular property defined in the events paper a useful
concept? Why or why not?

4. Based on the formal models. briefly compare each of the two new systems with the
other ones that were formally modelled. For example, you might explain which of the
other systems are they most similar to.

5.5 Analysis and Interpretation of a System

In addition to the assignments described above, students also examined and described the
architecture of a non-trivial system. About midway through the semester we asked each
group of students to select a system from a list of candidates that we supplied. Alternatively,
students could volunteer a system of their own, provided it met the criteria outlined below.

The students' task was to complete an archi-tecmal analysis of the chosen system by the
end of the semester. This analysis was required to include the following components:

1. Parts catalog: A list of the modules in the system, making the interfaces explicit,
together with an explanation of what each one does.

2. Interconnections catalog: A list of the connections between modules together with a
descriptions of each.

3. Architectural description: A description of the system's architecture, using the vocab-
ulary developed in the course.

4. Critique: An evaluation of how well the architectural documentation for the system
matches the actual implementation.

5. Revision: Suggestions for ways that the system architecture could have been improved.

In addition to a written analysis students were expected to present their analysis to the
class. We allotted three days at the end of the semester for this. The grade on the project was
determined both by the written analysis and the presentation.

In selecting candidate systems we attempted to find systems that are tractable but chal-
lenging. Specifically, we applied the following criteria for selection:

- Size: Ten to twenty modules containing between 2,000 and 10,000 lines of code.
- Documentation: It should have enough system documentation that students do not need

to start from raw code to do their analysis.
- Resident guru: There should be someone in the local environment who knows the

system and can answer questions about its design and implementation.

6 Evaluation

6.1 Lessons from the Initial Offering

The first offering of the course ran during the spring semester of the 1991- 1992 academic year
at Carnegie Mellon University. Four undergraduate students and seven Master of Software
Engineering students took the course. There were also half a dozen regular auditors. The
lessons we have learned as a result of that offering are based upon the students' progress in
learning the course material and on evaluation of the course by the students themselves.

Content. It is clear that a sufficiently large body of knowledge exists to support a course
in software architecture. When we designed this version we were unable to include all the
topics of interest, and we made some hard decisions among alternative materials for the
topics we did include.

The specific topics of the course had varying success. The section on architectural idioms
was particularly valuable. While the section on MILS was important to have included in the
course, we now feel we spent too much time on that topic. Two lectures would have been
more appropriate than the four that we scheduled. The formal methods segment worked
out well, but for students with no exposure to Z, it required considerably more effort than
the other sections. (Almost all of the master's level students had already had a course in
formal methods.) The lectures on domain-specific software architectum were of mixed
value, since these lectures were predominantly given by invited speaken. The section on
tools and environments was reasonably successful, but suffered from the fact that there is
relatively little material directly applicable to software architectures.

Many of the readings were quite good; others should be replaced. The best of the
readings included Nii's survey of Blackboard Systems [NiiS6a, Nii86b], Andrews' survey of
distributed architectures [And9 1], Shaw's overviewof architectural styles (Sha90al, Parnas'

classic "Criteria" (Par72l and A7 papers (PCW85], the Perry Inscape paper (Per87], a paper
on implicit invocation by Garlan. Kaiser, and Notkin (GKN881, Lampson's hints on system
design [Lam84l, and Lane's paper on the concept of the design space (Lan90]. The course
syllabus would have been much better if we had been able to find good readings about Unix
pipes, management information system architectures, the ISO Open Systems Interconnection
model, and architectural tools. We would also like to find readings about object-oriented
systems that deal specifically with architectural issues, rather than programming issues.

The assignments that involved construction and analysis of systems were generally quite
valuable, as they gave students practice in applying the principles of the course. However, we
felt that we could have chosen tasks that would have both challenged the students more than
we did, and at the same time focused on some of the more important issues of architectural
design.

Chosing good practical problems is one of the most difficult (and important) parts of
developing such a course. Part of the problem centers around finding systems that are of
the right size and complexity. On the one hand, it is important to find systems that are large
enough to represent nontrivial architectures. On the other hand, there is a limit to the size of
system students that can handle, particularly given the fact that we wanted students to have
experience with several architectures.

Our approach to the problem was to give students a working system and a collection of
parts that they could reuse and modify in adapting the system to the task assigned. Overall
this was a good approach, although it takes a lot of preparation to make it successful. We
attempted to use Booch components fBoo87] for the first and third assignments, and the
standard Unix tools for the second assignment. However, many of the software needed in
the solutions to the problems could not be found in these standard collections. As a result
a majority of the code in the starting frameworks was developed by us from scratch. For
example we used only one Booch component package (a total of 200 lines), but wrote 1400
lines of Ada and 300 lines of C for the frameworks provided to the students.

Another aspect of the problem of chosing good assignments is to find problems that
exploit the target architecture but do not have a single solution. Our assignments were not
sufficiently rich to accomplish this. Moreover, time constraints prevented us from making
more parts available than were absolutely required for the assignments, so the students did
not face the challenge of selecting an architectural solution from a rich parts kit.

One issue involving the assignments was the use of multiple programming languages.
We wanted to avoid giving the impression tha therm is a one-to-one mapping between
programming languages and architectures. However, our parts kit (the Booch components)
was in Ada. and our version of the Ada compiler did not provide a library for manipulating
Unix pipes. This led us to use Ada for the first and third assignments, and C for the second.

Format. The division of the course into the major topics had some advantages, but overall
was viewed as needing revision. The course lectures touch each of the architectural idioms
three times: to introduce the idiom, to examine a suitable module connection language or tool,
and to introduce a formal model and analysis technique useful within the idiom. In addition,
some idioms reappear in domain-specific examples. In retrspect, a course organization that
factors the course along the lines of architectural idioms seems more appropriate

We were pleased to teach from selected readings. Th. readings allowed students to hear
the ideas in the voices of their creators. Moreover, we believe the state of of knowledge in

software architectures is not advanced enough to provide a single canonical picture of the
various architectures. Further, we were able to order the topics appropriately to meet our
ideas of how the topics should be presented. and to flexibly schedule the guest lecturers.

The chief disadvantages of using readings as source material are that notations and
terminology vary from paper to paper, and that the architectural significance of a paper may
not be well aruculated. It is also a nuisance to deal with copyright considerations (though
many of the papers carry blanket permissions for educational use).

Assigning questions on the class readings was a good idea. It served both to focus
students' attention and to encourage them to do the reading in advance. This worked well
enough that we could plan lectures that elaborated and interpreted the material rather than
repeating it.

The task formats worked well in terms of the amount of time allotted and overall structure
of the assignments. However, one challenge lay in the diversity of language experience
among the students. In particular, Ada was familiar to some students, but new to others.
While this course was not intended to be a "programming course," we found it necessary
to provide a brierf Ada help session for students without Ada experience. This session's
effectiveness was 'limited because it was held outside normal class hours and was not
directly graded. Ideally in an architectures course, however, all students should know the
programming languages to be used for the assignments prior to entering the class.

Using groups to accomplish the assignments had generally positive results. By mixing
graduate and undagraduate students on each team, the teams formed a balanced collection
of strengths which enabled them to grasp the essentials of the programming assignments
quickly. Also, having a team environment allowed the students to discuss the architectural
issues among themselves in a more structured format than might otherwise have been
available. We believe this would have been even more effective if a more challenging set of
problems were presented.

Comments From Students. We distributed two course evaluations to students, one midway
through the course and one at the end. Overall student responses were quite positive. Typical
comments were. "I've noticed that I'm viewing problems in other classes from a different
perspective.", and "I now finally understand what we were doing when we built that system
in the way we did."

At a more detailed level the students felt that the study of architectural idioms was most
important, and that it provided a foundation for a body of knowledge to which they had
not been exposed. They also said that the course encouraged a new perspective on software
systems. Some students wanted more emphasis on the process of architectural design and
guidance in choosing an architectural idioms. The general opinion was that more could be
added to the course, but not at the expense of current material.

The readings were generally viewed as a valuable pan of the course. Students appreciated
the incentive to read them regularly, and they particularly appreciated the absence of a final
exam. They also liked having lectures serve to elaborate the readings rather than repeating
them-something that is only possible when the instructor can assume that students have
actually read the readings.

The course required a significant amount of work, but the students thought it was worth
the effort. They noted that, unlike most courses, the load is fairly level. They had to pay
attention to the course regularly, but they didn't wind up with massive deadline crunches.

The team organizazen was also judged favorably. We received no complaints about
unequal workload withii a team. although some team members commented that getting a
consensus, even on a snail team, took time.

6.2 Changes to Consider

While we are generally satisfied with the course as taught, we see some areas that we plan
to change the next time we teach the course.

Content. While the course did not suffer from a lack of material, a number of areas could
be added to the curriculum. In particular, study of heterogeneous and integrated architectural
idioms would be appropriate, as would more study and practice in architectural design and
decision making. One way that room could be made for this material is by reducing the time
spent on module interconnection languages.

Another improvement would be to develop a more consistent terminology in our lectures
on architectures. Within the area generally termed software architecte, there is a bewilder-
ing diversity of terms for similar concepts. As the discipline evolves and the terminology
stabilizes, we would expect this problem to diminish.

Format. There are a number of format changes which we believe would improve the
coherency and conceptual integrity of the course. They are:

I. Concentrate on a paficular idiom for a span of 3-4 lectures to give the students a deeper
understanding of each class of architecture. A consistent format for the study of each
idiom might be: -

(a) Introduction of idiom and survey of class
(b) Related languas. or tools
(c) Formal model
(d) Case study and analysis
This could be complemented by an assignment for each idiom, to give a single, coherent
presentation of an azrhitectural style.

2. The assignments could be better planned to emphasize the architectural nature of the
projects, and minimize the "hacking" necessary to build a system. Assignments should
allow the students to create unsuccessful solutions as well as different but successful
solutions to the samre problem. More emphasis should be placed on analysis of the
assignment, encouraging students to reflect on the choices made and the reasons for
these choices.
The only way we see to create reasonable projects is to provide collections of ready-
made components. Unfortunately, reasonable "parts kits" are scarce, and most existing
parts kits do not clearly illustrate an architectural style. Moreover, in many cases (such
as in event systems), architectural styles require tools beyond those provided even by
a carefully constructed parts kit. This infrastructire is likely to be different for each
architectumal style, compounding the problem when multiple architectural styles are
presented. Generally, in order to effectively teach multiple architectural styles within
the constraints of a single-semester course, we need architectural tools as well as parts
kits.

3. The architectural analysis project should use examples that are familiar to the instructors
and which have existing architectural documents for the students to start with.

4. The reports that the students produce from the architectural analysis project should
emphasize the high-level structural and communications paradigms of the system, rather
than specific funcuonality or detailed algorithmic analysis. To this end, the assignment
of the project should specify the structure of the report, and provide good examples of
existing architectural analyses.

6.3 Conclusions About Teaching Software Architecture

Software architecture is worth teaching. It can be taught in many ways. Based on our experi-
ence with the present course and previous experience with four semesters of graduate reading
seminars in the area, we can draw some conclusions about teaching software architecture in
any format.

- Architecture provides a bridge between theory and coding. In any program teaching
system design, there are high principles of program construction which are difficult
to relate to the small programming assignments that comprise the majority of the
undergraduate experience. A course that presents students with the terminology of
software architecture and that gives them concrete examples of systems to relate to
specific architectural styles allows the students to relate these two disparate bodies of
information more readily and concretely.

- Students seem capable of rapidly developing an aesthetic about architectures. They
can identify systems in their own experience which match specific styles, and they
can also identify flawed designs as examples of poorly-formed or poorly-understood
architectures. They are quite capable of answering open-ended questions about the
appropriateness of a specific architecture to a problem and defending their positions
rationally and powerfully. Unity does not evolve among the students, however. Different
students will promote different architectures for the same problem, depending upon their
particular points of view.

- There is little concrete material available in any form to guide design decisions. Absent
such material, students get little help in resolving point-of-view differences. Instructors
should make every effort to present techniques for selecting among architectural alter-
natives, including even simple rules of thumb such as "consider an interpreter when
you're designing for a machine that doesn't actually exist."

- There is enough substantive material to fill a course. The selection we made for this
offering was based on the coverage of our graduate reading seminars. However, we
recognize that there were a number of difficult choices in our selection which might
well have gone another way. In our opinion, the field of software architectures is moving
from a point where finding enough papers is difficult to one where the challenge is to
select the appropriate complement of papers.

- We wish there were more organized surveys of the material than are currently present.
Currently, the fragmented nature of the material requires that the students be carefully
instructed on exactly which information within a given papa is appropriate to the
subject at hand. This is compounded by the sheer size and disorganization of the current
software architectures field. There are few papers which view problems from a purely
architectural perspective, and the boundaries between architectural idioms are not always

clear. We would like to see more papers presenting architectural analysis techniques,
and more worked examples in specific architectures. We would also like to see more
mature distributed systems architectures and more papers like Nii's (Nii86a. Nii86b]
that survey a class of systems against a single architectural paradigm. We think this will
come with a better understanding of the idioms that comprise software architecture.

- It is tempting to treat the subject of software architectures abstractly and present only
idealized views of the various architectural idioms. Resist this. Students have weak
intuitions about the high-level architectural abstractions. Every formal or abstract model
must be related to a real example, so that the student not only learns the abstract view of
the architecture, but also the characteristics of a concrete instance of that architecture.

- Practice in using models is important. Analyzing existing architectures without working
within the specific architectural framework does not allow the student to recognize the
strengths and weaknesses of individual architectural styles. It is not sufficient for a
student to be able to recognize a specific idiom; the student must also be able to decide
which idiom to apply to a particular problem. For that skill, analysis alone is not enough.

Acknowledgments

The authors would like to thank Robert Allen, Mario Barbacci, Marc Graham, Kevin Jeffay,
Dan Klein, Reid Simmons. and Pamela Zave for participating as guest lecturers in the first
offering of this course. We would also like to thank James Alstad for his participation in the
development of the early curriculum of this course.

References

(AG921 Robert Allen and David Garlan. A formal approach to software architectures. Submitted
for publication, January 1992.

[And91 Gregory R. Andrews. Paradigms for process interaction in distributed programs. ACM
Comparing Surveys. 23(l):49-90, Mach 1991.

[Bac861 Maurice J. Bach. The Design of the UNIX Operating System, chapterS.12 pages 111-119.
Software Series. Prentice-Hall, 1986.

[BAP87] J. M. Bishop. S. R. Adams. and D. J. Pritchard. Distributing concuret Ada programs by
source translation. Software--Practice and Experience, 17(12):859-844, December 1987.

(Bis871 Judy M. Bishop. Ada profile charts in software development. Journal of Pascal. Ada and
Modda-2, 8(2), October 1987.

[(0911 Don Bawry and Sean O'Malley. The design and implementation of hierarchical software
systems using reusable components. Technical Report TR-91-22, Departnent of Computer
Science, University of Texas. Austin. June 1991.

[Boo86] Grady Booch. Object-oriented development. IEEE Transactions on Software Engineering.
SE-12(2):211-221. February 1986.

[Boo87] Grady Booch. Software Components with Ada: Structures. Tools and Subsystems. Ben-
jamtinCummings. Menlo Park. CA. 1987.

[BWW881 M. R. Barbacci, C. B. Weinstock, and J. M. Wimg. Programming at the processor-
memory-switch level. In Proceedings of Ot 10th International Conerence on Software
Engineering. pages 19-28. Singapore, April 1988. IEEE Computer Society Press.

[D*91 Doubleday et al. Building distributed Ada applications from specifications and functional
components. In Proceedings of TRI.Ada'91. pages 143-154. San Jose, CA. October 1991.
ACM Press.

IDK761 Frank DcRemer and Hans H. Kron. Programming-in-the-large versus programming-in-
the-small. IEEE Transactions on Software Engineering, SE-2(2):80-86, June 1976.

[DSS9OI Proceedings of the Workshop on Domain-S pecific Software Architectures. July 1990.
[Eas9OJ Anthony Earl. A reference model for computer assisted software engineering environ-

ment frameworks. Technical Report KPL-SEG-TN-90-1 1. Hewlett Packard Laboratories.
Bristol. England. August 1990.

[Fi&71 Bill Flinn and ib Holmn Sorensen. CAVIAR. A Case Study in Specification. Prentice Hanl
InternationaL. 1987.

[Fis9l 1 Gary Fisher. Application portability profile -APP- The U.S. Govermnent's open sys-
tem environment profile. US Department of Commerce. April 1991. National Technical
Information Service Special Report. 500-187.

[FOS5i Marek Fridnich and Williamn Older. Helix: The architecture of the XMS distributed file
system. IEEE Software, 2(3):21-29. May 1985.

[GD9OI David Gariaji and Norman Delisle. Formal specifications; as reusable framneworks. In
VDM'QO: VDM and Z -Formal Methods in Software Development. Kiel. Germany. 1990.
Springer-Verlag. LNCS 428.

[GKN88I David Garlan. Gail E. KaiseL and David Nodkin. On the criteria to be used in compos-
inig tools into systems. Technical Report 88-08-09. Department of Computer Science.
University of Washington. August 1988.

(GN9I I David Garlan and David Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In VOM'91: Formal Software Development Methods. pages 31-44. Springer-Verlag.
LNCS 55 1. October 1991.

(Gro9liI MIF Working Group. Master A prototech module interconnection formalism. Draft of
December 1991. 1991.

IH*881 Robert Harper et &I. Introduction to Standard ML Technical repot. Laboratory for Foun-
dations of Computer Science. Computer Science Department. University of Edinburgh.
March 1988.

[HGN91J A. Nico Haberinann. David Garlan. and David Notkin. Generation of integrated task-
specific software environments. In Richard F. Rashid.. editor, CMU Computer Science: A
25th Commemorative. Anthology Series, pages 69-98. ACM Press. 1991.

[HK91 I lain Houston and Steve King. Experiencesandresults from the useotZin IBM. In VDM'9I:
Formal So! twareDevelopmeraMedsods. numbeeSSI in Lecture Notes in Computer Science,
pages 588-595. Springer- Verlag. October 1991.

[HR901 Barbara Hayes-Roth. Architectural foundations for real-time performance in intelligent
agents. The Journal of Real-Towe System. Kiztwer Academic Publishers. 2:99-12.5, 1990.

[r8931 J. D. Ichbish et &l. Rationale for the design of the Ad& programming language. SIGPL4N
Notices. 14(16 (Part B)):8:1-16. 13:1-21.june 1983. Chapters 8 (Modules) and 13 (Generic
Program Units).

rJohs6I Stephen C. Johnson. YACC: yet another compiler-compiler. In UNIX Programmer's
SupplemervaoryDocuments. volume PSI, pages 15:1-33. University of California. Berkeley.
1986.

[Lam84I Butler W. Lampson. Hints for computer system design. IEEE Software. l(1): 11-28.
January 1984.

(Lan9Oj Thomas G. Lane. A design space and design rules for user interface software architec-
ture. Technical Report CMUIS EI-90-TR-22 ESD-90-TR-223. Carnegie Mellon University
Software Engineering Institute. November 1990.

[Uin87j Mark A. Linton. Distributed managementof a software database. IEEESoftware. 4(6):70-
76, November 1987.

(LS791 Hugh C. Lauer and Edwin H. Sanerthwaite. Impact of MESA on system design. In
Proceedings of rhe Thir Internarional Confrence on Software Engineering. pages 174-
175. IEEE Computer Society Press. May 1979.

(LS861 M. E. Lesk and E. SchmidL. LEX--a lexical analyzer generator. In (fNIX Programmer's
Supplemertary Docasmens, voL PSI. pages 16:1-13. University of California. Berkeley.
1986.

(Nii86aI H. PennyNii. Blackboardsystems Part 1: The blackboardmodelofprblem solving andthe
evolution of blackboard architectures. Al Magazine. 7(3):38-53. Summer 1986. Reprinted
with corrections by Al Magazine.

[Nii86b] H. Penny Ni. Blackboard systems Part 2: Blackboard application systems and a knowl-
edge engineering perspective. Al Magazine. 7(4):82-107. August 1986. Reprinted with
corrections by Al Magazine.

[Par72] D. L Pamas. On the criteria to be used in decomposing systems into modules. Communi-
cazions of the ACM. 15(12): 1053-1058, December 1972.

[Pau8g5 Mark C. Paulk. The arc network: A case study. IEEE Software, 2(3):61-69. May 1985.
[PCW851 David L Parnas. Paul C. Clements. and David M. Weiss. The modular structure of com-

plex systems. IEEE Transactions on Software Engineering. SE-I 1(3):259-266. March
1985.

(PDN86] Ruben Prieto-Diaz and James M. Neighbors. Module interconnection languages. The
Journal of Systems and Software. 6(4):307-334. November 1986.

[Per87J Dewayne E. Perry. Software interconnection models. In Proceedings of the Ninth Inter-
national Conference on Software Engineering, pages 61-68. Monterey, CA. March 1987.

IEEE Computer Society Press.
[PW91] Dewayne E. Perry and Alexander L Wolf. Software architecture. Submitted for publica-

tion. January 1991.
[RC861 Sridhar A. Raghavan and Donald R. Chand. Applications generators & fourth generation

languages. Technical Report TR-86-02O Wang Institute and Bentley College. February
1986.

[S871 AlJed Z. Spectoret aL Camelot: A distributed transaction facility for Mach and the Internet
- an interim report. Technical Report CMU-CS-87-129. Carnegie Mellon University. June

1987.
[S*88] V. Seshadri et al. Semantic analysis in a concurrent compilem In Proceedings of ACM

SIGPL4N '88 Conference on Programming Language Design and Implementaon. ACM
SIGPLAN Notices. 1988.

[SG861 Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions on
Graphics. 5(2):79-109. April 1986.

ISG901 Lui Sha and John B. Goodenough. Real-time scheduling theory and Ada. Computer, pages
53-62. April 1990.

(Shag5] Mary Shaw. What can we specify? Questions in the domains of software specifications.
In Proceedings of the Third International Workshop on Software Specification and Design.
pages 214-215. IEEE Computer Society Press. August 1985.

(Sha90af Mary Shaw. Elements of a design language for software architecture. Unpublished position
paper 1990.

(Sha9Ob] Mary Shaw. Toward higher-level abstractions for software systems. In Data & Knowledge
Engineering, volume 5. pages 119-128. Elsevier Science Publisher B.V., North Holland.
1990.

[Sha91] Mary Shaw. Heterogeneous design idioms for software architecture. In Proceedings of
the Sixth International Workshop on Software Spec•_cation and Design. IEEE Computer
Society. Software Engineering Notes. pages 158-165. Coma. Italy. October 25-26 1991.

(Spia88 J. Michael Spivey. The Fuzz Manual. Computing Science Consultanct 2 Wldlow Close,
Gmington. Oxford OX9 9AN. UK. 1938.

[Spi89a] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall. 1989.
[Spi89b] J.M. Spivey. An introduction to Z and formal specification. Software Engineering Journal.

4(1).40-50. January 1989.

SST861 Steven A. Shafer. Anthony Sentz. and Charles E. Thorpe. An architecture for sensor
fursion in a mobile robot. In Proceedings of the IEEE InternationalConference on Robotics
and Ataomation, pages 2002-2010. San Franciso. CA. April 1986.

[Sta881 John A. Stankovic. Misconceptions aboutreal-bmne computing. Computer. Vol.21(10):1O-
19. October 1988.

[TangIl] Andrew S. Tannenbaum. Network protocols. ACM Computing SuWveys. 13(4):453-489.
December 1981.

[WBJ90I Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying current research in object-
oriented design. Communications of the ACM. 33(9):104-124. September 1990.

(Zav9l] Pamela Zave. An insider's evaluation of PAISLey. IEEE Transactions on Software Engi-
rneering. 17(3):212-225. March 1991.

